首頁(yè)>資訊 >
焦點(diǎn)!生成式 AI 改變 Web3 未來(lái)的 5 種方式 2023-03-13 15:45:48  來(lái)源:36氪

AI 已經(jīng)躍升到一個(gè)新的水平,現(xiàn)在正在幫助構(gòu)建 Web3。 本文將幫你了解生成式 AI 將如何塑造 Web3 的未來(lái)。


(相關(guān)資料圖)

本文要點(diǎn):

生成式 AI 是一種用于生成人工內(nèi)容(如文本、圖像、音頻和視頻內(nèi)容)的 AI。 Web3 中的 AI 應(yīng)用程序包括在游戲、NFT、資產(chǎn)創(chuàng)建和軟件開(kāi)發(fā)中部署數(shù)字收藏品。 除了內(nèi)容生成之外,AI 還可以通過(guò)簡(jiǎn)化開(kāi)發(fā)流程和改善去中心化應(yīng)用程序 (dapps) 的用戶(hù)體驗(yàn)來(lái)幫助推動(dòng) Web3 發(fā)展。 雖然仍然存在版權(quán)、準(zhǔn)確性和創(chuàng)造力等挑戰(zhàn),但 AI 時(shí)代已經(jīng)到來(lái)——各種 AI 模型正在改變企業(yè)和行業(yè)的運(yùn)行模式。

01 AI 生成內(nèi)容(AIGC)——內(nèi)容生成的下一階段

AI 生成內(nèi)容 (AIGC) 最近變得非常流行,DALL-E 和 ChatGPT 等應(yīng)用程序生產(chǎn)了令人印象深刻的視覺(jué)資產(chǎn),以及實(shí)現(xiàn)了類(lèi)人對(duì)話。

從廣義上講,生成式 AI 是一種用于通過(guò)計(jì)算機(jī)模型生成內(nèi)容(例如文本、圖像、音頻和視頻)的 AI。 AIGC 被廣泛認(rèn)為是繼專(zhuān)業(yè)生成內(nèi)容 (PGC) 和用戶(hù)生成內(nèi)容 (UGC) 之后內(nèi)容生成的下一階段。

PGC 通常由平面設(shè)計(jì)師和動(dòng)畫(huà)師等創(chuàng)意專(zhuān)業(yè)人士制作,供品牌使用或發(fā)布,而 UGC 則由最終用戶(hù)創(chuàng)建,并直接在 YouTube、Facebook 或 Twitter 等社交媒體網(wǎng)站上分享。

近年來(lái),隨著 AI 的快速發(fā)展,它可以生成各種類(lèi)型的內(nèi)容。 AI 的一些相關(guān)分支是自然語(yǔ)言處理 (NLP),它研究計(jì)算機(jī)如何處理和分析文本,以及生成對(duì)抗網(wǎng)絡(luò) (GAN),它旨在生成與訓(xùn)練數(shù)據(jù)集具有相似特征的新數(shù)據(jù)(例如圖像和視頻)。

AI 生成的內(nèi)容有助于加快創(chuàng)意過(guò)程,企業(yè)開(kāi)始注意到它在改變內(nèi)容創(chuàng)建方式以及創(chuàng)意團(tuán)隊(duì)跨行業(yè)運(yùn)作方式方面的潛力。

以下是連接 AI 和 Web3 的潛在場(chǎng)景和用例。

02 AIGC在Web3中的應(yīng)用

文本型 AI 及其對(duì) Web3 的影響

文本型 AI 是指使用 AI 來(lái)生成文本。 它是 NLP 的一種形式,可根據(jù)給定的輸入生成類(lèi)似人類(lèi)的文本,用于各種應(yīng)用程序,如摘要、對(duì)話系統(tǒng)和機(jī)器翻譯。 今天的文本生成器用于為各種目的生成原創(chuàng)的、有創(chuàng)意的內(nèi)容,并且在 Web3 中的某些領(lǐng)域,文本生成可能非常有用。

借助文本 AI 工具,可以重新構(gòu)想在線搜索并提供更直觀的 Web 導(dǎo)航方式。 ChatGPT 與微軟在線搜索引擎 Bing 的最新集成現(xiàn)在引入了聊天界面作為一種搜索 Web 的方式。

與此同時(shí),谷歌發(fā)布了自己的 NLP 模型版本 Bard,這是一種由 LaMDA 驅(qū)動(dòng)的實(shí)驗(yàn)性對(duì)話 AI 文本服務(wù),有助于簡(jiǎn)化復(fù)雜的主題并綜合查詢(xún)的見(jiàn)解。

生成式 AI 可以改變?nèi)藗兯阉骶W(wǎng)絡(luò)的方式

生成式 AI 有可能改變?nèi)藗冊(cè)诰W(wǎng)絡(luò)上過(guò)濾信息的方式,并有可能減少對(duì)搜索引擎廣告模型的依賴(lài)——許多當(dāng)前的 Web2 用戶(hù)長(zhǎng)期以來(lái)一直希望避免這種情況。

文本生成工具允許用戶(hù)在進(jìn)行查詢(xún)時(shí)消除 SEO 生成內(nèi)容的噪音(盡管涉及人工干預(yù)和微調(diào))。 如果搜索偏好發(fā)生變化,有利于文本型 AI 工具,則搜索引擎可能會(huì)被替換,這意味著需要挖掘的與搜索相關(guān)的廣告混亂更少——這是 Web3 的核心標(biāo)準(zhǔn),旨在將技術(shù)的權(quán)力重新交到用戶(hù)手中。

在區(qū)塊鏈游戲中,文本型 AI 可以通過(guò)多種方式增強(qiáng)游戲開(kāi)發(fā)人員和藝術(shù)家的創(chuàng)造力和生產(chǎn)力。 通過(guò)利用文本型 AI,可以快速制作和完善基本的視頻游戲元素(例如對(duì)話、故事和角色組合等),從而通過(guò)更快地產(chǎn)生創(chuàng)意來(lái)簡(jiǎn)化創(chuàng)作過(guò)程。

生成式 AI 可以改變 NFT 的生成方式

AI 還可以幫助生成圖像和視頻——這些類(lèi)型的內(nèi)容可以被鑄造成 NFT。 這些人工智能生成的 NFT 被稱(chēng)為生成藝術(shù) NFT,藝術(shù)家將首先輸入一組規(guī)則(如一系列顏色和圖案),以及迭代次數(shù)和隨機(jī)程度等參數(shù)。 然后計(jì)算機(jī)將在這個(gè)指定的框架內(nèi)生成藝術(shù)品。

其中一個(gè)例子是“CryptoPunks”生成者 Larva Labs,它創(chuàng)建了“Autoglyphs”NFT 集合。 以下是在 AI 的幫助下生成的 NFT 集合的其他示例。

以下是一些生成式藝術(shù) NFT 示例:

1.Autoglyphs

Autoglyphs 由 CryptoPunks 創(chuàng)作者 Larva Labs 發(fā)布,構(gòu)建于以太坊區(qū)塊鏈之上,總量 512 個(gè)。

2.Fidenza

Fidenza 系列由視覺(jué)藝術(shù)家 Tyler Hobbs 創(chuàng)作,利用了生成各種曲線和區(qū)塊的通用算法,總量 999 個(gè)。

3.Ringers

Ringers 系列由藝術(shù)家 Dmitri Cherniak 創(chuàng)作,這些藝術(shù)品由 JavaScript 生成,描繪了將繩子纏繞在一組釘子上的各種方式,總量 1000 個(gè)。

4.Chromie Squiggle

該系列由 Erick ‘Snowfro’ Calderon 創(chuàng)建,由九種不同樣式方案中隨機(jī)生成的波浪線組成,總量 10000 個(gè)。

5.Lost Poets

該系列由數(shù)字藝術(shù)家 Pak 創(chuàng)作,既是 NFT 合集又是策略游戲,總量 65,536 個(gè)。

AI 可以幫助生成鏈游中的頭像和物品

生成式 AI 模型可以協(xié)助在 Web3 環(huán)境中大規(guī)模創(chuàng)建游戲資產(chǎn)——從化身、設(shè)備、車(chē)輛到人工制品。 游戲行業(yè)可以應(yīng)用文本到圖像的生成式 AI 模型,這些模型能夠根據(jù)文本描述生成創(chuàng)意資產(chǎn)和內(nèi)容。 在某些參數(shù)內(nèi),現(xiàn)代語(yǔ)言模型也可用于圍繞所創(chuàng)建的資產(chǎn)構(gòu)建上下文,例如物品力量統(tǒng)計(jì)數(shù)據(jù)、角色屬性或智力。

AI 生成的圖像和視頻現(xiàn)在非常先進(jìn),甚至可以用于在元宇宙中的區(qū)塊鏈游戲和虛擬產(chǎn)品中創(chuàng)建特效。 例如,Mirror World 是一個(gè) GameFi 項(xiàng)目,它利用 AI 驅(qū)動(dòng)的虛擬“鏡子”作為游戲角色的資產(chǎn)。 Mirror 資產(chǎn)在每款游戲中都可以完全互操作,確保資產(chǎn)持有者能夠在游戲上線時(shí)使用它們應(yīng)對(duì)新的挑戰(zhàn)。

Alethea AI 的 CharacterGPT 項(xiàng)目是生成式 AI 發(fā)揮作用的另一個(gè)例子。 它具有一個(gè)稱(chēng)為 CharacterGPT 的多模態(tài) AI 系統(tǒng),可以從文本描述中生成交互式 AI 字符,從而實(shí)現(xiàn)文本到字符的創(chuàng)建。 基于不同的自然語(yǔ)言描述,交互角色可以具有不同的外貌、聲音、個(gè)性和身份。

這些角色可以在區(qū)塊鏈上被代幣化,他們的主人還可以定制他們的個(gè)性并訓(xùn)練他們的智力,以及在 Alethea 的 AI 協(xié)議上的各種其他 dapp 上交易和使用它們。 這些交互式角色的擬議用例包括數(shù)字孿生(旨在反映物理對(duì)象的虛擬模型)、數(shù)字指南、數(shù)字伴侶、虛擬助手以及 AI 非玩家角色 (NPC)。

AI 可以幫助查找 Bug

在構(gòu)建 Web3 基礎(chǔ)設(shè)施和應(yīng)用程序時(shí),AI 可以幫助簡(jiǎn)化開(kāi)發(fā)過(guò)程。

例如,AI 應(yīng)用程序用于調(diào)試代碼。 使用 AI,ChatGPT 在某種程度上展示了不僅可以讀寫(xiě)代碼,還可以發(fā)現(xiàn)代碼中的錯(cuò)誤的能力。

一些加密專(zhuān)業(yè)人士現(xiàn)在已經(jīng)開(kāi)始使用 AI 程序來(lái)完成簡(jiǎn)單的代碼審計(jì)任務(wù):智能合約審計(jì)公司 Certik 的開(kāi)發(fā)人員使用 ChatGPT 來(lái)“快速理解和總結(jié)復(fù)雜代碼片段的語(yǔ)義”。

03 最后:Web3 中 AI 使用的挑戰(zhàn)、風(fēng)險(xiǎn)和前景

AI 帶來(lái)了無(wú)限的可能性,它的唯一限制就是用戶(hù)的想象力。 即使在早期階段,AI 模型也繼續(xù)展示其在轉(zhuǎn)變企業(yè)甚至行業(yè)方面的能力。 由于進(jìn)入門(mén)檻低促使了廣泛采用,AI 很可能成為我們未來(lái)在這個(gè)數(shù)字世界中的生活方式。 但是,此類(lèi)技術(shù)也存在一些挑戰(zhàn)和風(fēng)險(xiǎn)。

挑戰(zhàn)之一可能是消費(fèi)者和組織對(duì) AI 生成的內(nèi)容的抵制。 例如,主要的圖庫(kù)網(wǎng)站和平臺(tái) Getty Images 禁止上傳和銷(xiāo)售使用 AI 藝術(shù)工具生成的插圖。 版權(quán)問(wèn)題被認(rèn)為是原因,因?yàn)橐恍┤斯ぶ悄苌傻膱D像復(fù)制了受版權(quán)保護(hù)的內(nèi)容,原始藝術(shù)家的水印仍然可見(jiàn)。

AIGC 面臨的另一個(gè)挑戰(zhàn)是生成內(nèi)容的質(zhì)量問(wèn)題。 斯坦福大學(xué)教授 Andrew Ng 舉了一個(gè)例子,其中 ChatGPT 錯(cuò)誤地認(rèn)為算盤(pán)如何比 GPU 更快,幸好事實(shí)并非如此。

對(duì)于該領(lǐng)域的大多數(shù)人來(lái)說(shuō),AI 這項(xiàng)技術(shù)已經(jīng)被證明開(kāi)始擾亂勞動(dòng)力。 然而,認(rèn)為 AI 將在工作中取代人類(lèi)是一種誤解。 事實(shí)上,它實(shí)際上可以在現(xiàn)有市場(chǎng)和新興市場(chǎng)中創(chuàng)造新的機(jī)會(huì):AI 很可能會(huì)幫助增加就業(yè)機(jī)會(huì),或者會(huì)創(chuàng)造出與AI 相關(guān)的新型工作,只需要一些技能提升。

作家威廉·吉布森 (William Gibson) 的一句名言可能最能描述 AI 的未來(lái):“未來(lái)已經(jīng)來(lái)臨——只是分布不均?!?今天 AI 和 Web3 之間的交集也可以這樣說(shuō)。

關(guān)鍵詞:

相關(guān)閱讀:
熱點(diǎn)
圖片 圖片